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J. Phys. A: Math. Gen. 17 (1984) 1367-1380. Printed in Great Britain 

The Josephson effect in superfluid helium and general 
relativity j. 

Jeeva Anandan $ 
Max-Planck-Institut fur Physik und Astrophysik, Werner Heisenberg-Institut fur Physik, 
D-8000 Munchen 40, Federal Republic of Germany$ and Department of Mathematics, 
University of California, Berkeley, CA94720, USA 

Received 30 August 1983 

Abstract. A theory of the ~3 Josephson effect in superfluid helium is presented. 
The particular case of a toroidal tube with a Josephson junction, containing superfluid 
helium, is considered. The phase shift, the coupling mass and energy, when this superfluid 
interferometer has an angular velocity, are obtained. The possibility of detecting the earth’s 
rotation and the general relativistic Lense-Thirring field due to the rotating earth, using 
this interferometer, is considered. Thermal fluctuations in the superfluid and the consequent 
limitation on the sensitivity of the interferometer are also studied. Comparison is made 
with the analogous case of a superconducting ring with a Josephson junction. 

1. Introduction 

The attractive possibility of detecting general relativistic gravitational effects on super- 
conductors was first suggested by De Witt (1966) and Papini (1967). This idea was 
recently revived by Widom et a1 (1981), Anandan (1981a, b, c) and Chiao (1981, 
1982) and was extended to superfluid helium by the last two authors. Superfluid 
helium, being neutral, has the advantage over superconductors that no electromagnetic 
effects need to be taken into account. The purpose of the present paper is to make a 
careful study of the Josephson effect in superfluid helium and investigate the influence 
of rotation and gravitation on a Josephson interferometer consisting of a toroidal tube 
containing superfluid helium interrupted by a Josephson junction. By superfluid helium, 
here we mean the superfluid of either helium-four atoms or the Cooper pairs of 
helium-three atoms. 

Since there is much controversy regarding the experimental detection of the 
Josephson effect in superfluid helium (Anderson and Richards 1975, Gamota 1974) 
it appears necessary to give a derivation of the Josephson effect in superfluid helium 
in order to convince ourselves that such an effect should be present on general quantum 
mechanical grounds. We therefore give a simple derivation of the DC Josephson effect 
for superfluid helium, in 0 2, using the Gross-Pitaevsky equation. Since the latter 
equation is similar to the Ginzburg-Landau equation for superconductors (Ginzburg 
and Landau 1950) this derivation is also easily extended to superconductors. The 
reason why this effect has been observed clearly in superconductors but not in superfluid 
helium-four may be partly because the coherence length in superfluid helium-four 
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(-10 A) is much smaller than the coherence length for superconductors (-1000 A),  
which makes it so much more difficult to construct a Josephson junction for superfluid 
helium-four. For superfluid helium-three, on the other hand, the coherence length is 
-5OOA; but, in this case, much lower temperatures are needed to produce the 
superfluid. In this paper, the stated effects on superfluid helium are computed on the 
assumption that these technical problems can be overcome and a suitable Josephson 
junction for superfluid helium can be constructed. 

In 0 3, the Josephson effect is considered for the special case of a toroidal tube, 
containing superfluid helium, which has an angular velocity along its axis of symmetry. 
This treatment, which takes into account the relative motion between the superfluid 
helium and the tube due to the Josephson effect in determining the phase difference 
across the Josephson junction, differs from some previous treatments (Anandan 
1981a, b, Chiao 1981, 1982), but is consistent with Anandan (1981~) .  The coupling 
mass and energy for the interaction between superfluid helium and the apparatus is 
obtained in § 4. 

In § 5 ,  the effect of the general relativistic Lense-Thirring field is treated quite 
simply by noting that this field results in a local precession of inertial frames. This 
enables the results of 0 3 to be immediately applied to this general relativistic situation. 
A comparison is made with the superconducting analogue of a superconducting ring 
with a Josephson junction in P 6 and it is shown how the phase shift for both cases 
can be obtained as special cases of the same basic equation. The effect of thermal 
fluctuations is considered on § 7 and the limitation on the sensitivity due to thermal 
fluctuations is determined. We conclude by making a suggestion for future experiments. 

2. The DC Josephson effect 

We shall make the usual assumption that the superfluid helium is described by an 
order parameter +(r, t )  which is a complex function analogous to the usual Schrodinger 
wavefunction. But it will be assumed to satisfy the Gross-Pitaevsky equation (Gross 
1961, Pitaevsky 1961) 

iha+/at = -(h2/2m)V2++ V++gl+12+ (2.1) 

where the nonlinear term represents collective interactions of the superfluid, g is a 
constant and V is a real function representing the ‘potential energy’ due to the other 
interactions. It follows from (2.1) that 

(a/at)(+*+)+div[(h/2im)(+*V+- +V+*)]=O (2.2) 

which is formally the same as the continuity equation obtained from Schrodinger’s 
equation. Also in a stationary situation, we can write +(r ,  t )  = t , !~~(r)  e-iEt’*, where E 
is a constant, and qb0 then satisfies 

-(h2/2m)V2+o(r> + V+o(r) + gl+o12+o(r> = E+o(r). (2.3) 

Writing +o=a ei’, where the ‘amplitude’ a and the ‘phase’ 4 are real functions, the 
current density 

j =  ( h / 2 i m ) ( + * ~ + - + ~ + * )  = (h/m)a*V+. (2.4) 

According to (2.2), j satisfies d iv j=O in a stationary situation. On defining the 
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superfluid velocity us= (h/m)V+, since ccl0 is single valued, 

(mlh)  f7 U, * d r  = 27rn 

n being an integer, for any closed curve y which is in the interior of the superfluid. 
Consider now two regions containing the superfluid, separated by a Josephson 

junction, by which we mean a weak link that allows the wavefunction on either side 
to tunnel through it. We shall assume that a coordinate system can be chosen such 
that the junction is at rest in the region -a a, V has a constant positive value 
U inside the junction and V = 0 for 1x1 > a. If U >  E then 4 in the region 1x1 < a can 
be intuitively regarded as a superposition of two decaying wavefunctions from either 
side. We can therefore obtain an approximate solution of (2 .3) ,  in this case, such that 

x 

- a s x s a ,  (2 .6)  - (ao/fi) e - ( x + a ) / t + e i + z  e(x-a)/t~, * -  
where +I and +z are the values of the function 4 at x =-a and x = a and a0, 5 are 
constants. 

It follows from (2 .6)  that the current density in the junction is 

j= (ha ie -2a / t /mf )  sin(+z-+l)n (2 .7)  
where n is a unit vector along the positive x-axis. The current given by (2 .7)  is 
analogous to the Josephson current (Josephson 1962) for superconductors and the 
derivation given here is similar to that of de Bruyn Ouboter (1973) for the supercon- 
ducting Josephson current. Outside the junction (1x1 > a), j =  a 2 u ,  from (2.4). But 
since div j = O  everywhere, j has the same value inside and outside the junction. 
Therefore, setting A 4  = &-+,, using (2 .4)  and (2 .7)  

U,= (ha ;  e-2a/ ' /ma2t) sin A+. (2 .8)  
Also (2 .7)  gives not only the magnitude of the Josephson current but also its direction. 
For instance, when 0 < + 2 -  +1 < 7r, j is in the direction of increasing phase. This will 
become important in 0 3 when (2 .7)  or (2 .8)  will be applied to a specific case. 

3. The Josephson effect for a toroidal tube containing superfluid helium 

Consider a hollow torodial tube of length L, containing superfluid helium and a 
Josephson junction of length I inside the tube (figure 1). The thickness of the torus 

J 

Fwre 1. Schematic diagram of a toroidal tube. containing superfluid helium and a Josephson 
junction J. As the tube rotates with tangential speed U,, the superfluid flows with speed 
U, inside the tube satisfying the equation given in the text. 
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is small compared with the radius. Suppose that the torus rotates about an axis 
perpendicular to its plane passing through the centre so that the speed at each point 
on the tube is U, relative to an inertial frame K. It is clear from the derivation of (2.7) 
or (2.8) that they are valid relative to the junction. In the present case, the velocity 
of the superfluid relative to the junction is us-ua where U, is the superfluid velocity 
relative to K,  outside the junction. Therefore (2.8) must be replaced, in the present 
case, by 

U,- U, = uo sin(A4 - mu,l/A). (3.1) 

Also it follows from (2.5) that 

A 4  + (m/h )  IC U, d l  = 27rn (3.2) 

where C is a curve inside the superfluid connecting the two ends of the Josephson 
junction without passing through the junction and n is an integer. 

It follows from the continuity equation div j = 0 that the current jr j d S  (Z is any 
cross section of the tube) is constant along the tube. Since the tube is assumed to have 
uniform cross section and a may be assumed constant in the tube outside the junction, 
U, is also constant along C. Hence, from (3.1) and (3.2), 

v, - U, = vo sin( us/ us + mv,Z/h) (3.3) 

where uq = h/ m (  L - 1). But it should be noticed that the superfluid velocity inside the 
junction need not be the same as the U, outside the junction, because a inside the 
junction is, in general, different from the a outside the junction. From (3.3), 

(3.4) 

Hence if vo< uq, then du,/dv, is always well defined and therefore for each v,, there 
is a unique solution for v, in (3.3). Figure 2(a)  illustrates U, as a function of U, in this 
case. But if vo> vq then U, is no longer a single-valued function of v, and this is 
illustrated in figure 2(b) .  In the latter case, hysteresis occurs. It will be assumed from 
now onwards that v o S  uq so that there is no hysteresis. We shall also assume, for 
simplicity, that I<< L so that v q - h / m L  and (3.3) and (3.4) can be approximated by 
(Anandan 1981c) 

dv,/dv, = [1+ ( uo/ uq) cos(v,/ uq + mu,Z/h)]-'. 

U, - U, = vo sin( U,/ uq) 

and 

dv,/dv, = [ 1 + ( uo/ uq) cos( U,/ uq)]-' 

(3.3') 

(3.4') 

provided v,l/ u,L<< 2 r .  
It would be instructive to compute the phase shift due to a small change Sv, of 

the speed of rotation of the apparatus. This will be useful in 0 5 where such a small 
perturbation due to a general relativistic effect arising from the earth's rotation will 
be considered. The corresponding change in vs is then 6u, = (dv,/dv,) Sv,, which on 
using (3.4'), gives the phase shift (the change in -Ad) to be 
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Figure 2. The graph of the superfluid velocity U, against the apparatus velocity U, for 
u0/ uq = 9 ( a )  and uo/ uq = 3 ( b ) .  For u0 < uq, U, and U, are well defined functions of each 
other. But for uo> uq, U, can have several values for a given U,. In the latter case, hysteresis 
can occur as indicated by the dotted lines. Both graphs are plotted in the limit I<< L. 

We can also write 

(3.6) 

It then appears that when uo is nearly equal to uq, by appropriately choosing U, so 
that 1 + (uo/  uq) cos( U,/ uq) is small, 84 can be made large. 

If the apparatus is at rest with respect to the earth then, in ( 3 3 ,  6u, = O,R, where 
R, is the component of the earth's angular velocity normal to the plane of the 
interferometer and R is the radius of the torus. Hence if the interferometer is not in 
a horizontal plane and it is turned about a vertical axis, then R, and hence S$J would 
vary in general. The effect of earth's rotation on this interferometer can then, in 
principle, be detected by measuring the corresponding change in the Josephson current 
for the different orientations of the apparatus. 

We conclude this section by noting that the treatment of Anandan (1981b) is a 
special case of the above treatment corresponding to the velocity of the superfluid 
relative to the apparatus outside the Josephson junction being small compared with 
uq. Also, the above treatment and results differ very much from Chiao (1981, 1982). 

Sua d r  
84 =- ?f l + ( u o / v q )  cos(u,/uq) ' 

4. The coupling mass and energy 

It was suggested by Chiao (1982) that the superfluid helium Josephson current may 
be experimentally determined by suspending the apparatus by means of a torsional 
oscillator and measuring the change in the resonance frequency arising from the recoil 
due to the flow of the Josephson current. Suppose T is the torque in the suspending 
string, which is assumed to be along the axis of symmetry of the apparatus. Then, if 
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L, and La are respectively the angular momenta of the superfluid and the apparatus 
about this axis 

(4.1) 

where t denotes the time. Now L, = RM,u, and La = IR,, where M, is the mass of the 
superfluid, R is the radius of the torus and I, na are respectively the moment of inertia 
and angular velocity of the apparatus. It follows from (3.3') that 

T = dL,/dt + dL,/dt 

du,- R dRa/dt - 
dt  1 + ( uo/ uq) cos( us/ uq)' 

Therefore from (4.1) and (4.2), T = (I+M,R2)dRa/dt where 

M, 
1 + ( 0 0 1  uq) cos( us/ uq)' 

M, = 

(4.2) 

(4.3) 

Hence when the torque T is applied to the apparatus, it behaves as if it has an additional 
mass M, due to its coupling with the superfluid. There would then be a corresponding 
change in the resonant frequency of the torsional oscillator. The expression (4.3) for 
this 'coupling mass' M, differs from the expression obtained by Chiao (1982). This is 
partly because the latter paper assumes that the phase shift is ( m / h )  f U, d r  contrary 
to the treatment above. 

The change in the coupling mass due to a small perturbation Sua of the velocity of 
rotation of the apparatus is given by (4.3) and (3.4') to be 

The sensitivity of detection of the Josephson current due to a perturbation by the 
measurement of the corresponding change in the coupling mass is therefore propor- 
tional to dM,/du,. Figure 3 illustrates the dependence of dM,/dua on U, for uo< uq. 

The coupling energy E, is defined as the part of the energy given to the apparatus 
to accelerate it from rest to the given angular velocity it now has, due entirely to the 
coupling of the apparatus to the superfluid. We shall now determine E, since it will 

h- - 
- 5  - 

0 2 n 4  6 2n 8 3n 
"s 'vs 

3 

Figore 3. ( v , / M , )  dM,/du, as a function of the phase difference UJ U, across the Josephson 
junction, where M, is the coupling mass, for v o / v ,  = 3/4. The graphis plotted in the limit 
1 << L. 
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be relevant to the analysis of thermal fluctuations in 0 7. The change in the coupling 
energy when the apparatus is turned by a distance dr,, during which the superfluid 
velocity changes by du,, is dE, = M,(du,/dt) dr, = M,  du, U,. (This can be derived 
alternatively as dE, = M,(du,/dt) dr, = M, dv, U, = M,u,[l+ (vo/  uq) cos( u, /uq)]  dus= 
Msu, du,). Hence the coupling energy is 

E, = IoE‘ dE, = lo”‘ Ms[ U, + uo sin( U,/ U,)] d us. 

Hence 

E,=$Msv~+(h/m) lo( l -cos  A + )  (4.5) 

where A 4  = -u , /vq  and lo= (m/h)Msuouq is easily seen to be the critical current in 
the usual Josephson equation. 

The first term in (4.5) would be the kinetic energy of the superfluid, if U, is constant 
throughout the superfluid including the junction while the second term, which is 
periodic in A+, represents the additional energy due to the change in U, and a inside 
the junction. The latter term is analogous to the Josephson coupling energy for 
superconductors. For small A+, E, = ~ M s u ~ (  1 + uo/ v , ) A + ~ .  This implies, as expected, 
that A +  = 0 is a point of stable equilibrium. 

5. Phase shi f t  due to the general relativistic Lense-Thirring field 

It is well known that, according to general relativity, a rotating body slightly drags 
inertial frames so that the local inertial frames consequently precess relative to the 
distant stars (Lense and Thirring 1918). Hence if the superfluid Josephson inter- 
ferometer, described in P 3, is near such a rotating body, then even if it is non-rotating 
relative to the distant stars, it would in fact be rotating relative to the local inertial 
frames; consequently there would be a phase shift due to this purely general relativistic 
effect. 

To determine this phase shift, it would be convenient to rewrite (3.6) in terms of 
a coordinate system fixed to the apparatus in which the metric coefficients gwy (sig- 
nature: +---) are such that go = (go,, go,, goJ = -va/c, c being the velocity of light. 
Then (3.6) reads 

64 =-(mc/h)[l+(uo/uq) cos(vs/uq)l-’ (5.1) 

where 6go = -6va/ c is the perturbation. As mentioned earlier, 6go can be non-zero 
due to the presence of a nearby rotating object. The 6go due to a ball rotating about 
a diameter is called the Lense-Thirring field in the linear approximation, and is given 
by (Lense and Thirring 1918) 

ago= (4GMR2/5c3r3)R X r ( 5 . 2 )  

where M, R and fi are respectively the mass, radius and angular velocity of the ball, 
and r is the position vector from the centre of the ball. So if the toroidal tube goes 
around the great circle of the ball perpendicular to the axis of rotation N times then 
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the phase shift, from (5.1) and (5 .2 ) ,  is (Anandan 1981c) 

(5.3) 
8 TNGMm R R  

5hc2[1 +(uo/uq) COS(U,/U~)I 
&#I = 

where uq = h/mL = h/m2?rRN. 

ball is given by (4.4) to be 
Similarly the change in the coupling mass due to the Lense-Thirring field of the 

4 GMR M, u0 sin( U,/ uq) 
5c2v%[ 1 + ( u0/ uq) cos( U,/ u,)I3‘ 

SM, = (5.4) 

If the apparatus is at rest relative to the distant stars then, of course, U, = 0 and U, = 0 
in (5.3) and (5.4). However, if the entire apparatus is attached to the earth then, in 
general, U, and U, would be non-zero because of the earth’s rotation. 

Consider now the possible detection of the Lense-Thirring field of the earth. In 
this case also Sgo is given by (5 .2 )  with the mass Me, radius Re  and angular velocity 
a, of the earth replacing M, R and a. The phase shift, from (5.1), is 

where N is the number of turns of the toroidal tube, A is the area enclosed by each 
turn, 4 is the latitude, 8 is the angle between the normal to the area and the vertical 
and Re, is the component of the earth’s angular velocity normal to the plane of the 
interferometer. In all these equations U, can be expressed in terms of U, on using 
(3.3’). Equation ( 5 . 5 )  corrects a result in Anandan (1981b). 

The above treatment neglects any possible strong gravitational effect due to the 
variation of the Newtonian potential around the interferometer. A more general 
treatment that takes this into account is given in the appendix. 

6. Comparison with superconductor 

The superconducting analogue of the apparatus considered in the previous sections is 
a superconducting ring, with a Josephson junction, that rotates about the axis of the 
ring. As in P 3, we shall treat this case also non-relativistically. Figure 1 will now be 
taken to represent this superconducting ring with the Josephson junction between 
points 1 and 2. It is well known that, in this case, the current relative to the junction is 

Z = I o  sin A$* (6.1) 

where A 4 *  =I: [ V 4 ’  - (q/A)A] d r  is the ‘gauge invariant phase difference’ across the 
junction, A is the vector potential, 4’ the phase relative to the junction and q is the 
charge of the Cooper pair. 

Let U, be the velocity field of this ring relative to the inertial frame K with respect 
to which it is rotating. We define the superfluid velocity relative to K to be the gauge 
invariant quantity 
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where + is the phase relative to K and m is the mass. Then 

A+* =; U, dr  

where 
u,=us-u, (6.4) 

is the velocity relative to the ring. Suppose y is a curve going around the ring through 
its interior. Then 4, V4 * dr  = 27rn or 

f U, 6 dr = 27rn + - A * dr h" f, 
where n is an integer. Using (6.4), 

From (6.3) and (6.6) 

where the integrals are over curves in the interior of the ring with the directions and 
endpoints as indicated. 

Now a crucial difference between the present superconducting case and the super- 
fluid helium case is that the current, outside the junction, flows on the surface of the 
superconductor, i.e. 

U, = 0 (6.8) 

in the interior of the superconductor, outside the junction. Hence from (6.1), (6.7) 
and (6.8), 

I = I o s i n ( ~ $ l ~ 3 1 A . d r - - - m ~  1231 u,.dr) (6.9) 

for this superconducting Josephson interferometer. On the other hand, for the super- 
fluid helium case considered in 0 3, (6.8) is not valid, because the superfluid is assumed 
to flow uniformly, whereas 

q=o .  (6.10) 

So in this case (6.1), (6.7) and (6.10) give 

I = I o  sin( - ; $lz31 U, 6 dr-: 12,, U, dr). (6.11) 

Also I = p A u , ,  where p is the density of the superfluid helium and A is the area of 
cross section of the tube. Therefore, writing Io = p A u o ,  from (6.11), 

or 
- v r =  uo sin[mu,L/h+ mu,(L- 1 ) / R ] .  

It is clear, on using (6.4), that this is the same as (3.3). 
(6 .12)  
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Hence, the superconducting and the superfluid helium cases can be obtained as 
special cases, corresponding to (6.8) and (6.10) respectively, of the more general 
equation (6.7). We also note in this connection that when the approximation I<< L, 
made previously, is not valid, it appears more convenient to study the relationship 
between the variables U, and U, given by (6.12) rather than U, and U, given by (3.3). 

Another important difference between the superconducting and the superfluid 
helium cases is the following. The kinetic momentum of a Cooper pair, according to 
(6.2), is 

p =  m v s = h V 4 - q A .  

Hence, if the magnetic field is turned on then it is possible for A and 4 to change 
simultaneously and quickly so that p remains constant (usually 0). But for superfluid 
helium, since q = 0, changes in phase must necessarily be accompanied by changes in 
p .  And changes in the kinetic momentum p propagate with the velocity of sound. 
Hence, while it is known that the time taken for the phase difference to accumulate 
across the Josephson junction in a superconducting ring is h/A,  where A is the energy 
gap, the corresponding time for the superfluid helium interferometer cannot be less 
than L/u,  where U is the velocity of sound in superfluid helium and L is the length of 
the tube. 

Hence if the superfluid helium interferometer is used to detect gravitational radi- 
ation (Chiao 1981,1982, Anandan 1981b) then the speed of propagation of the signal 
inside the superfluid cannot exceed the velocity of sound U. This disagrees with the 
conclusion of Chiao (1981, 1982) that this speed is the velocity of light. Thus while 
a SQUID can be used to detect electromagnetic waves, because of the quickness with 
which the phase builds up across the Josephson junction for reasons mentioned above, 
the superfluid helium gravitational wave detector, which is no more efficient than a 
Weber bar, is probably not suitable to detect gravitational waves. But this objection 
does not apply to possible detection of the Lense-Thirring field because the signal, in 
this case, is time independent, unlike in the case of gravitational radiation. 

7. Thermal fluctuations 

We now investigate the limitations in sensitivity of the apparatus considered in 00 3-5 
due to thermal fluctuations of the superfluid. The general theory of thermal fluctuations 
from thermodynamic equilibrium will first be outlined and then the special case of the 
superfluid Josephson interferometer will be considered. 

Consider a system U in thermal equilibrium with a thermal bath so that the combined 
system of U and the bath is a closed system. It is known that the probability of 
fluctuation from equilibrium w CC exp(AS,) where ASt is the change in the total entropy 
of the combined system. It can be shown that (Landau and Lifshitz 1969) 

AS, =-R,i,/ kT (7 .1)  
where Rmin is the minimum work on U needed to carry out the given change in the 
thermodynamic quantity X of U whose fluctuation is of interest, T is the absolute 
temperature and k is the Boltzmann constant. Suppose E ( X )  is the internal energy 
of U. Then if (+ does not undergo a change in volume and no part of Rmin is given 
away as heat to the thermal bath then 

Rmi, = AE =$ a2E/aX21,(AX)2+O[(AX)3] (7.2) 
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where X = X o  corresponds to stable equilibrium so that aE/dXI,=O and 
a2E/aXZI,> 0: It therefore follows from (7.1) and (7.2) that 

w a  exp[-$ a2E/aX21,(AX)'/ kT]. 
Hence 

(7.3) 

(7.4) 

where the bar denotes thermal average. It is therefore necessary to compute 
a2E/aX2(, to determine the mean square fluctuations of X. 

Consider now the superfluid Josephson interferometer, described earlier, which 
has constant angular velocity along its axis relative to an inertial frame K and is in 
thermal equilibrium with a thermal bath. Let F be a rotating frame such that the 
apparatus is at rest with respect to F when it is in thermal equilibrium with the bath. 
If the apparatus is at rest on the earth, F would be the frame of the earth. The 
superfluid is taken to be the system U in the above analysis. Let U, be the superfluid 
velocity and U, the velocity of the apparatus relative to K. At equilibrium, let U, = us0 
and U, = ua0. Then U: = U,- ua0 and U: = U,- ua0 are the superfluid velocity and 
apparatus velocity, relative to E 

Suppose EA is the internal energy of the superfluid relative to F. Then the change 
in EA when the apparatus is rotated infinitesimally is 

dEL = M, d u: U: = M, d us( u, - ua0) = M,  d us[ us + uo sin( us/ uq) - ua0] 

on using (3.3'). Hence 

E: = dEA =$M,(u? - u?o)+(R/m)lo(cos Ado-cosA4)+M,va~(u,~-u,) (7.5) 

where A4 = U,/ uq, Ado = us0/uq and Io = mM,uouq/R. Clearly (4.5) is a special case of 
(7.5) corresponding to us0 = 0 and ua0 = 0. Now aE~/au, lus=,  = 0. Therefore if is 
the thermal fluctuation in the phase shift, then using (7.4) 

1:; 

Since Sua = (du,/du,)Su, =[1+ ( uo/uq)  cos A40]uqS~,  the smallest Sua that can be 
measured from the corresponding phase shift 84, allowed by the thermal fluctuation 
(7.6), is 

(SVa) ,= [ l+ (~o /~q)  COS Ado]'/Z(kT/Ms)'/Z. (7.7) 
The coupling mass relative to F is given by 

= M, (7.8) 
----- MS - 1 d E '  1 d E i d u ,  1 -  c -  

Mc -U: du: u,-uao du, du, l + ( u o / u q ) c o s A ~  

on using (3.3'). Hence the change in the coupling mass when U, changes by Sua is 

Consider now the special case of cosAdo=O. Then, from (7.7), ( S U , ) ~ =  
( kT/M,)''2. The Sua due to the earth's Lense-Thirring fields is (Su,), = Ran,, where 
R is the radius of the torus and Sa, is the Lense-Thirring precession of inertial frames 
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due to the earth's rotation near the surface of the earth where the experiment is being 
performed. From (5.2), for the earth's Lense-Thirring field, 

(7.10) 

Therefore SR = 4.5 X rad s-' on the earth' surface ( r  = Re)  at latitude 45". So if 
R = 3m then (Sv,), = 1.35 X m s-'. Now the temperature and the mass of the 
superfluid needed, so that the corresponding phase shift is bigger than the thermal 
fluctuation, must satisfy ( S U , ) , ~  (kT/Ms)' '2 .  For T = 1 K, therefore Msa 
7.5 X lo2 kg. This minimum mass needed can, of course, be decreased by lowering 
the temperature and/or increasing the radius of the torus. 

8. Conclusion 

We have developed a general theory of the Josephson effect in superfluid helium which 
gives definite experimental predictions for superfluid helium in a toroidal tube with a 
Josephson junction. An interesting outcome of this analysis is that when u0> uq, 
hysteresis can occur as seen from figure 2 ( b ) .  In this case, for a given value of the 
apparatus velocity U,, several values of the superfluid velocity U, and therefore the 
Josephson current is possible and transitions between these various values may take 
place. So the experimental difficulty in detecting this effect may be due to the 
experiments, so far, being done for uo> uq. 

Also, as seen from figure 3, the sensitivity of detection of this effect is minimum 
when 21, and therefore U, is zero. So it would be necessary for the apparatus to have 
already an angular velocity such that ldM,/du,l has a large value. Hence if the 
experiment is redone under these conditions, it may be possible to detect this effect. 
Once this effect has been unambiguously detected, we would be in a much better 
position to assess the possibility of detection of the phase shift due to the general 
relativistic Lense-Thirring field, which is predicted in § 5 .  
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Appendix. The superfluid Josephson interferometer in a stationary gravitational field 

The phase shift in a Josephson interferometer which would be valid even in a strong 
gravitational field was obtained by Anandan (1981b) for the special case when the 
velocity of the superfluid, relative to the apparatus outside the Josephson junction, is 
negligible. While this assumption is valid for a superconducting interferometer, as 
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already mentioned in 5 6, since the Cooper pairs are pinned to the lattice in the interior 
of a superconductor; it is in general not a good approximation for superfluid helium. 
We consider here the same problem for superfluid helium in the more general case 
when this relative motion is not negligible, which was treated for weak gravitational 
field by Anandan (1981~) .  

The superfluid ‘four-velocity’ U, ,  which is defined by v = - (h /  mc)  a,& where the 
scalar 4 is the phase of the relativistic order parameter f ( r ,  t ) ,  satisfies 

v,v,-v.v, = o  ( A l l  

“”U” = 1 + f (A2) 

where f is a scalar function defined in Anandan (1981a,b) and V ,  is the covariant 
derivative. This U” also satisfies the continuity equation (Anandan 1981a, b): 
V , ( c r 2 v ” )  = 0. The phase difference across the Josephson junction that enters into the 
Josephson equation I = Io sin AI$ is then 

and 

where y is a curve going around the tube, through the superfluid, beginning and ending 
at two events that are simultaneous relative to the Josephson junction on the opposite 
sides of the junction. We assume that the gravitational field has a Killing field 6” such 
that 2)” = pt” ,  outside the junction, where the function p will now be determined. 

Let s” be a vector field such that l ” s ,  = 0, s”s, = -1 and s” is normal to each 
cross section of the tube containing the superfluid helium. It then follows from ( A l )  
that 0 = s ’ ~ ” ( V , v ,  - V ” v P )  = As” arp + ps”6’ V P & ,  - ps”6’ V , ( ,  where A = S”(p. On 
using Killing’s equation VP( , ,  + V , &  = 0, therefore ps” 8,A = -As” dwp. Hence, p = 
AA-’ with s” 8,A = 0. We assume a stationary situation for which 6” 8,A = 0. Then 
A is a constant, which can be chosen to be 1 by appropriately normalising 6’. Hence, 
from (A3), 

which is the same as equation (11) of Anandan (1981b), (when the size of the junction 
is negligible). 

Choose now a coordinate system comoving with the superfluid in which 5” = 
(1 ,0 ,0 ,0) .  Then A-’(,+ = g i i g p 0 =  (1, go,, go,, go3) for a weak gravitational field, 
neglecting terms that are second order in (goo- l ) ,  g o i ( i  = 1,2 ,3) .  Then (A4) is 

which is the same as (3.3) of Anandan (1981~) .  The goj’s in (3.3) and (3.4) of the 
latter paper, which are defined in two different coordinate systems stated above these 
equations, have the values - v i / c  and - v a / c ,  in the special case when the apparatus 
is at rest with respect to the second coordinate system. The relation between these 
two go,% are then given by (3.3’) of the present paper, which is also an immediate 
consequence of (3.1), (3.2) of Anandan ( 1 9 8 1 ~ )  (for a weak gravitational field). The 
former goi is determined by solving this equation and (A5) is then evaluated. This 
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was done in the latter paper for the more general case when the apparatus is not 
necessarily at rest in the second coordinate system. 

Suppose now that there is a Killing field 6” whose direction is the same as that of 
t”, the four-velocity field of the apparatus, and not that of U*. Then U* V , ( ~ ” U , )  = 
~ ” 6 ’ “  V,uu =it’“ a f  where we have used (Al ) ,  (A2) and the Killing equation for 5:. 
In the present stationary situation we can assume that 6”’ &f = 0 and 6” a,(6”u,) = 0. 
Then ~ ‘ ” u ,  is a constant wo, say. Therefore we can write U” = (A’)-’oo6’” + KS’” where 
A ‘  = [‘”t; and s’” is orthogonal to 6‘” and the cross section of the tube and sf”s ;  = -1 .  
From (A2), K and wo are related by (A‘)-*&- K~ = 1 +f. Also, from (A3), 

which can now be evaluated on using the continuity equation, stated below (A2), and 
the Josephson equation. 
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